MP 6.01.23 Wireless Capsule Endoscopy as a Diagnostic Technique in Disorders of the Small Bowel, Esophagus and Colon

Medical Policy

Section	Original Policy Date	Last Review Status/Date
Radiology | 12:2013 | Reviewed with literature search/12:2013

Issue 12:2013

Disclaimer

Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.

Description

Wireless capsule endoscopy is a device intended to visualize portions of the bowel which are not accessible via upper or lower endoscopy, primarily the small bowel. Patients swallow the capsule, and it records images of the intestinal mucosa as it passes through the gastrointestinal (GI) tract. The capsule is collected after being excreted and the images interpreted.

Wireless capsule endoscopy is performed using the PillCam™ Given® Diagnostic Imaging System (previously called M2A®), which is a disposable imaging capsule manufactured by Given Imaging, Ltd (Norcross, GA). The capsule measures 11 by 30 mm and contains video imaging, self-illumination, and image transmission modules, as well as a battery supply that lasts up to 8 hours. The indwelling camera takes images at a rate of 2 frames per second as peristalsis carries the capsule through the gastrointestinal tract. The average transit time from ingestion to evacuation is 24 hours. The device uses wireless radio transmission to send the images to a receiving recorder device that the patient wears around the waist. This receiving device also contains some localizing antennae sensors that can roughly gauge where the image was taken over the abdomen. Images are then downloaded onto a workstation for viewing and processing.

The device received marketing clearance from the U.S. Food and Drug Administration (FDA) on August 1, 2001, through the 510(k) process. The FDA clearance provides for the capsule's use "along with – not as a replacement for – other endoscopic and radiologic evaluations of the small bowel." The FDA clarified that the "capsule was not studied in the large intestine." On July 1, 2003, a supplemental 510(k) premarket notification was cleared, and the labeled indications were modified by removing the “adjunctive” use qualification: “the Given® Diagnostic System is intended for visualization of the small bowel mucosa. It may be used as a tool in the detection of abnormalities of the small bowel.”

In November 2004, the device received FDA clearance for the following labeled indication: “the Given® Diagnostic System with the PillCam™ ESO Capsule is intended for the visualization of
esophageal mucosa.” A new model was cleared by the FDA in June 2007, the PillCam ES02 Capsule. In September 2007, the FDA cleared the Olympus Capsule Endoscope System through the 510(k) process for “visualization of the small intestine mucosa.” More recent versions of both these systems also incorporate a blood indicator feature to assist with rapid screening of intestinal lesions with bleeding potential.

In the small bowel, the capsule camera has been most frequently proposed as a technique to identify the source of obscure intestinal bleeding, although recently there has been interest in exploring its use in patients with inflammatory bowel disease. Alternative diagnostic techniques include barium studies or small intestinal endoscopy. In the esophagus, the capsule camera has been proposed as a screening technique for Barrett’s esophagus associated with gastroesophageal reflux disease (GERD). Evaluation of the esophagus requires limited transit time, and it is estimated that the test takes 20 minutes to perform. Alternative techniques include upper endoscopy.

In 2006, the FDA also provided clearance for the Given AGILE patency system. This system is an accessory to the PillCam video capsule and, according to FDA material, is intended to verify adequate patency of the GI tract prior to administration of the PillCam in patients with known or suspected strictures. This capsule is of similar size to the endoscopy capsule but is made of lactose and barium and dissolves within 30–100 hours of entering the GI tract. It carries a tracer material that can be detected by a scanning device. Excretion of the intact capsule without symptoms (abdominal pain or obstruction) is reported to predict the uncomplicated passage of the wireless capsule.

Policy

Wireless capsule endoscopy of the small bowel may be considered **medically necessary** for the following indications:

- Initial diagnosis in patients with suspected Crohn’s disease without evidence of disease on conventional diagnostic tests such as small-bowel follow-through (SBFT), and upper and lower endoscopy.
- Obscure gastrointestinal (GI) bleeding suspected of being of small bowel origin, as evidenced by prior inconclusive upper and lower gastrointestinal endoscopic studies.
- For surveillance of the small bowel in patients with hereditary GI polyposis syndromes, including familial adenomatous polyposis and Peutz-Jeghers syndrome.

Other indications of wireless capsule endoscopy are considered **investigational**, including but not limited to:

- Evaluation of the extent of involvement of known Crohn’s disease
- Evaluation of the esophagus, in patients with gastroesophageal reflux (GERD) or other esophageal pathologies
- Evaluation of other gastrointestinal diseases not presenting with GI bleeding including, but not limited to, celiac sprue, irritable bowel syndrome, small bowel neoplasm
- Evaluation of the colon including, but not limited to, detection of colonic polyps or colon cancer.
The patency capsule is considered investigational, including use to evaluate patency of the gastrointestinal tract before wireless capsule endoscopy.

Policy Guidelines

Obscure GI bleeding is defined as “recurrent or persistent iron-deficiency anemia, positive fecal occult blood test, or visible bleeding with no bleeding source found at original endoscopy.” (Van Gossum 2001)

In 2004, a CPT code 91110 was introduced, which specifically describes the use of the capsule camera as follows:

91110: Gastrointestinal tract imaging, intraluminal (e.g., capsule endoscopy), esophagus through ileum, with physician interpretation and report.

Effective in 2007, there is a CPT code specific to capsule endoscopy of the esophagus alone: 91111: Gastrointestinal tract imaging, intraluminal (e.g., capsule endoscopy), esophagus with physician interpretation and report.

Rationale

This policy was created in February 2002 and updated periodically with literature review. The most recent update covers the period of June 2011 through June 2012.

Literature Review

Obscure GI Bleeding

Obscure gastrointestinal (GI) bleeding is defined as bleeding from the GI tract that persists or recurs without an obvious etiology after imaging with upper and lower endoscopy and radiologic evaluation of the small bowel. Obscure GI bleeding is often detected by fecal occult blood testing performed for colon cancer screening, and the presence of anemia consistent with persistent blood loss. (1) Without anemia, further testing beyond upper and lower endoscopy is not warranted. Most obscure GI bleeding is due to lesions in the esophagus, stomach, and colon; 5% are due to lesions in the small intestine. Causes of obscure bleeding in the small intestine include angiodysplasia (70–80%), tumor (5–10%), and other causes (10–25%) including those related to medication, infections (tuberculosis), Crohn’s disease, Meckel’s diverticulum, Zollinger-Ellison, vasculitis, radiation enteritis, jejunal diverticula, and chronic mesenteric ischemia. (2) In patients older than age 60 years, angiodysplasia is the most likely cause, while in those younger than age 50 years, a small bowel tumor would be the most likely cause of bleeding. (3)

A 2007 position statement by the American Gastroenterological Association (AGA) states that capsule endoscopy should be the third test after upper and lower endoscopy in the evaluation of obscure GI bleeding. (1) Evidence cited in the accompanying technical review caused them to revise prior position statements in which other tests, such as bleeding scans, angiography, repeat endoscopy, enteroscopy, and enteroclysis were recommended, depending on the presence or absence of active bleeding. (4) The arguments supporting the utility of capsule endoscopy are based on several lines of evidence. Capsule endoscopy appears to have higher sensitivity of locating bleeding lesions compared to other diagnostic techniques, when
diagnostic yields are compared. The technical review summarizes 10 studies in which capsule endoscopy was compared with push enteroscopy in the same patients. Capsule endoscopy located a source of bleeding in between 25-55% more patients than push enteroscopy. (4) One study by Hartmann et al. compared the findings of capsule endoscopy to what might be considered the gold standard for localizing bleeding, intraoperative endoscopy. (5) Capsule endoscopy was 95% sensitive in locating bleeding and was able to localize bleeding in a few cases in which intraoperative endoscopy was not able to. In a study by Pennazio et al. in which long term follow-up was used as the reference standard, capsule endoscopy was 89% sensitive and 95% specific in 56 patients in whom a confirmed diagnosis was obtained. (6) A “true” reference standard for obscure GI bleeding is, in fact, difficult or impossible to achieve, as the bleeding source may resolve and invasive techniques such as surgery cannot be justifiably used.

Suspected Crohn’s Disease

Crohn’s disease is an inflammatory disease of the small intestine. It is usually diagnosed with small bowel imaging studies and ileocolonoscopy. When these studies are negative or equivocal, capsule endoscopy has been proposed as a method for identifying Crohn’s disease. However, there is no single gold standard diagnostic test for Crohn’s disease; the diagnosis is based on a constellation of findings. Thus it is difficult to determine the diagnostic characteristics of various tests used to diagnose the condition and difficult to determine a single comparator diagnostic test to capsule endoscopy. An international consensus from 2009 stated that there are no validated diagnostic criteria for interpreting capsule endoscopy for a diagnosis of Crohn’s disease, thus, possibly explaining the variability of the diagnostic performance of capsule endoscopy. (7)

Nonetheless, despite the difficulties in evaluating the clinical value of capsule endoscopy in assessing suspected Crohn’s disease, findings tend to indicate that, compared with other diagnostic modalities, capsule endoscopy has an equivalent or higher yield of positive findings. An international consensus statement found 7 studies comparing capsule endoscopy to small-bowel follow-through (SBFT), 1 study comparing capsule endoscopy to magnetic resonance imaging (MRI), and 4 studies comparing capsule endoscopy to computed tomography (CT) scan. (7) The conclusion statements stated that capsule endoscopy may be superior to these alternative diagnostic tests.

The role of capsule endoscopy in established Crohn’s disease is less certain. An international consensus statement states that radiographic imaging should take precedence over capsule endoscopy because of the capability to detect obstructive strictures, extraluminal and transmural disease. (7) The consensus statement identifies some studies in which capsule endoscopy had a higher percentage of positive findings than alternative tests in patients with established Crohn’s disease, but it is not clear how these findings correlated with either symptoms or the outcome of therapeutic intervention.

Suspected Celiac Disease

Celiac disease or gluten-sensitive enteropathy, is an immune-mediated condition of the small intestine. Serologic markers of the disease have good sensitivity and specificity, but the gold standard for diagnosis of celiac disease is obtained through small-bowel biopsies obtained during endoscopy. Capsule endoscopy has been evaluated as an alternative method of
diagnosing celiac disease or in assessing the extent of disease to improve management of patients.

A meta-analysis by El-Matary et al. compared the diagnostic performance of capsule endoscopy to a reference standard of duodenal biopsy. (8) The pooled analysis of 3 studies showed a sensitivity of 83% and a specificity of 98%. Another meta-analysis by Rokkas and Niv also compared the diagnostic performance of capsule endoscopy to biopsy, summarizing 6 studies that evaluated a total of 166 subjects. (9) The overall pooled sensitivity was 89% and the specificity was 95%. Capsule endoscopy was able to detect involvement of intestines beyond the duodenum; however, the clinical significance of detecting further extent of celiac disease is uncertain. Given the less than 90% sensitivity of capsule endoscopy for celiac disease, it does not appear to be an adequate alternative method of making an initial diagnosis.

The role of capsule endoscopy in established celiac disease has little evidence to assess. One study evaluated 47 patients with complicated celiac disease and found unexpected additional findings in 60% of patients, most of which were ulcerations. (10) However, the definition of “complicated” celiac disease included other factors such as evidence of blood loss, itself an indication for capsule endoscopy. The impact on patient management and outcomes is unclear.

Esophageal Conditions

Capsule endoscopy has the capability of visualizing several types of esophageal conditions. It could potentially substitute for traditional upper endoscopy for several indications and may have an advantage of comfort and convenience. However, interventional procedures and biopsies cannot be performed.

Most studies have shown that capsule endoscopy has inferior diagnostic characteristics compared to traditional upper endoscopy for a variety of esophageal conditions. A meta-analysis of 9 studies comparing capsule endoscopy to traditional endoscopy for detecting esophageal varices calculated a sensitivity of 83% and specificity of 85%. (11) Another meta-analysis of 9 studies comparing capsule endoscopy to traditional endoscopy for detecting Barrett’s esophagus showed a sensitivity and specificity of 77% and 86%, respectively. (12) The sensitivity of the test is not good enough to substitute for endoscopy.

Colon Cancer Screening

Capsule endoscopy has been investigated as a method of colon cancer screening. The test may detect precancerous polyps or actual cancer. Several studies have assessed the accuracy of capsule endoscopy for detection of colonic lesions. In the largest study of 328 patients, the sensitivity of capsule endoscopy was 64% for polyps 6 mm or larger, 73% for advanced adenoma, and 74% for cancer. (13) Other smaller studies show the sensitivity of capsule endoscopy for various types of lesions to be less than 80%. (14-16) A meta-analysis by Spada et al. of 8 studies enrolling 837 patients showed a sensitivity of 71% for polyps of any size and a specificity of 75%. (17) Almost all the existing studies evaluating capsule endoscopy for detecting colonic lesions have been done on patients with a clinical indication for colonoscopy rather than a screening population. Based on the low sensitivity for colonic polyps, capsule endoscopy is unlikely to be an effective screening test for colon cancer unless it is repeated more frequently than colonoscopy. The specificity of the test is not optimal either, meaning that patients will undergo unnecessary follow-up colonoscopy.

Hereditary GI Polyposis Syndromes
Persons with familial adenomatous polyposis and Peutz-Jeghers syndrome are at genetically high risk of small bowel polyps and tumors. Mata and colleagues studied the role of capsule endoscopy in 24 patients with hereditary GI polyposis syndromes, including familial adenomatous polyposis (n=20) or Peutz-Jeghers syndrome (n=4). (18) Compared to barium studies using small bowel enteroclysis, capsule endoscopy identified 4 additional patients with small bowel polyps, which were subsequently removed with endoscopic polypectomy. Another study by Brown et al. in 19 patients showed a greater number of polyps identified with capsule endoscopy than with barium follow-through examinations. (19) Although these studies are small, they demonstrate that capsule endoscopy can identify additional lesions in persons with disease syndromes at high risk for such lesions.

Patency Capsule

Contraindications to the use of capsule endoscopy include; known or suspected obstruction or stricture, Zenker’s diverticulum, intestinal pseudo-obstruction and motility disorders. Certain patients with known or suspected strictures of the small bowel may be at risk of retaining the capsule. Surgical removal may be necessary. There are limited data on the performance of the patency capsules proposed as a technique to evaluate patients with known or suspected strictures prior to using the wireless capsule endoscopy system. The capsule could be used either to eliminate certain patients who are considered low risk for capsule retention to further increase the safety of capsule endoscopy or to select patients at high risk for capsule retention who would otherwise not undergo capsule endoscopy. In either scenario, it needs to be determined whether the change in diagnostic strategy and ultimate treatment was ultimately improved as a consequence of either being selected or de-selected to have a capsule endoscopy.

These improvements would need to be weighed against any complications due to the use of the patency capsule. The published studies are small and do not provide comparative data about the incremental value of this capsule over standard clinical evaluation. Also, in some series, administration of the patency capsule has produced symptoms requiring hospitalization and even surgery. In a series from Europe, Delvaux et al. reported on findings in 22 patients with suspected intestinal stricture, 15 of whom had Crohn’s disease. (20) In this study, at 30 hours after ingestion, the patency capsule was detected in 17 patients (72.3 %). In all patients in whom the capsule was blocked in the small intestine, the stenosis had been suspected on computed tomography (CT) scan or small-bowel follow-through. In 3 patients, the delay in progression of the patency capsule led to cancellation of capsule endoscopy. In 3 patients, the patency capsule induced a symptomatic intestinal occlusion, which resolved spontaneously in 1 and required emergency surgery in 2. The authors commented that the current technical development of the patency capsule limits its use in clinical practice, as it did not detect stenoses undiagnosed by CT or small-bowel follow-through, and the start of dissolution at 40 hours after ingestion is too slow to prevent episodes of intestinal occlusion. They also comment that a careful interview eliciting the patient’s history and symptoms remains the most useful indicator with regard to suspicion of an intestinal stenosis. In another study from Europe, Spada et al. reported on findings in 27 patients, 24 with Crohn’s disease. (21) In this study, 25 patients (92.6%) retrieved the patency capsule in the stools. Six patients complained of abdominal pain, 4 of whom excreted a nonintact capsule, and hospitalization was required in 1 patient due to occlusive syndrome.

Several studies show that patients who had uncomplicated passage of the patency capsule subsequently underwent uncomplicated capsule endoscopy. (22-24) These patients often had...
significant findings on capsule endoscopy. (22,23) However, it is difficult to determine whether the findings of capsule endoscopy in these patients improved their outcomes beyond any alternate test regimen that could have been done. In 1 of these studies, 3 of 106 patients had severe adverse events, including 1 patient who required surgery. (22) The overall balance of harm and benefit of using the patency capsule cannot be determined from the existing studies.

Summary

Wireless capsule is a device that allows visualization of intestinal mucosa that is not accessible by traditional upper or lower endoscopy. It has been most extensively studied in patients with obscure GI bleeding. For this population, the evidence demonstrates that capsule endoscopy can identify a bleeding source in a substantial number of patients who are unable to be diagnosed by other methods, with a low incidence of adverse events. Since there are no other options for diagnosing obscure small bowel bleeding in patients who have negative upper and lower endoscopy, this technique will likely improve health outcomes by directing specific treatment when a bleeding source is identified. Therefore wireless capsule endoscopy may be considered medically necessary for the evaluation of obscure GI bleeding.

Similarly, for patients with suspected small bowel Crohn’s disease and for patients with familial polyposis syndromes who require surveillance, other methods are not available for visualizing the small bowel. Although the performance characteristics of the capsule for these indications are uncertain, it is likely to improve health outcomes by identifying some cases of these disorders and directing specific treatment. Therefore, wireless capsule endoscopy may be considered medically necessary for these indications.

For other conditions, including determining the extent of involvement in Crohn’s disease, celiac disease, esophageal conditions, colon cancer screening, and for determination of patency of the GI tract, the evidence is not sufficient to conclude that health outcomes are improved. For some of these conditions, e.g., esophageal conditions and colon cancer screening, other modalities are available that are superior to capsule endoscopy. For other conditions, e.g., determining the extent of Crohn’s disease, the accuracy of the device needs to be established prior to determining whether outcomes are improved. For these reasons, wireless capsule endoscopy is considered investigational for these indications.

Practice Guidelines and Position Statements

A 2007 position statement by the American Gastroenterological Association (AGA) (1) states the following concerning obscure GI bleeding and capsule endoscopy:

- Evaluation of the patient with obscure GI bleeding is dependent on the extent of the bleeding and the age of the patient.
- Patients with occult GI blood loss and no anemia most likely do not require evaluation beyond colonoscopy unless upper tract symptoms are present.
- Patients with occult GI blood loss and iron deficiency anemia and negative workup on esophagogastroduodenoscopy (EGD) and colonoscopy need comprehensive evaluation, including capsule endoscopy to identify an intestinal bleeding lesion.

An international consensus panel from 2009 (7) published guidelines on the use of wireless capsule endoscopy for inflammatory bowel disease (IBD). These guidelines included the following statements about evaluation of Crohn’s disease:
• Small bowel capsule endoscopy is able to identify mucosal lesions compatible with Crohn’s disease in some patients in whom conventional endoscopic and small-bowel radiographic imaging modalities have been nondiagnostic.

• A diagnosis of Crohn’s disease should not be based on the appearances at capsule endoscopy alone.

• A normal capsule endoscopy has a high negative predictive value for active small-bowel Crohn’s disease.

• For patients with established Crohn’s disease, small bowel capsule endoscopy is better at identifying small-bowel mucosal lesions than barium and may be better than CT or MR enterography or enteroclysis, but the clinical significance of this potential difference remains to be defined.

• There are no validated diagnostic criteria for small bowel capsule endoscopy for the diagnosis of Crohn’s disease.

References:

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>91110</td>
<td>Gastrointestinal tract imaging, intraluminal (e.g., capsule endoscopy) esophagus through ileum, with physician interpretation and report</td>
</tr>
<tr>
<td></td>
<td>91111</td>
<td>Gastrointestinal tract imaging, intraluminal (e.g., capsule endoscopy), esophagus, with physician interpretation and report (new code effective 1/1/07)</td>
</tr>
<tr>
<td>ICD-9 Diagnosis</td>
<td>211.2</td>
<td>Benign neoplasm of other parts of digestive system; duodenum, jejunum, and ileum (small intestine NOS)</td>
</tr>
<tr>
<td></td>
<td>555.0 – 555.9</td>
<td>Regional enteritis (Crohn’s disease), code range</td>
</tr>
<tr>
<td></td>
<td>578.0 – 578.9</td>
<td>Gastrointestinal hemorrhage, code range</td>
</tr>
<tr>
<td></td>
<td>759.6</td>
<td>Other hamartoses, not otherwise specified (includes Peutz-Jeghers syndrome)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No code</td>
<td></td>
</tr>
<tr>
<td>ICD-10-CM (effective 10/1/13)</td>
<td>D13.2-D13.39</td>
<td>Benign neoplasm of other and unspecified parts of the small intestine code range</td>
</tr>
<tr>
<td></td>
<td>K50.00-K50.919</td>
<td>Crohn’s disease (regional enteritis) code range</td>
</tr>
<tr>
<td></td>
<td>K92.0-K92.2</td>
<td>Hematemesis and gastrointestinal hemorrhage, unspecified code range</td>
</tr>
<tr>
<td></td>
<td>Q85.0-Q85.9</td>
<td>Phakomatoses, not elsewhere classified (includes Peutz-Jeigher’s syndrome) code range</td>
</tr>
<tr>
<td>ICD-10-PCS (effective 10/1/13)</td>
<td>0DH582Z</td>
<td>ICD-10-PCS codes are only used for inpatient services. There is no specific ICD-10-PCS code for this procedure. Surgical, gastrointestinal system, insertion, esophagus, via natural or artificial opening, endoscopic, monitoring device</td>
</tr>
</tbody>
</table>

Type of Service: Medicine
Place of Service: Inpatient or outpatient